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ABSTRACT

Current unsupervised deep learning-based image registration methods are trained with mean squares or nor-
malized cross correlation as a similarity metric. These metrics are suitable for registration of images where a
linear relation between image intensities exists. When such a relation is absent knowledge from conventional
image registration literature suggests the use of mutual information. In this work we investigate whether mutual
information can be used as a loss for unsupervised deep learning image registration by evaluating it on two
datasets: breast dynamic contrast-enhanced MR and cardiac MR images. The results show that training with
mutual information as a loss gives on par performance compared with conventional image registration in contrast
enhanced images, and the results show that it is generally applicable since it has on par performance compared
with normalized cross correlation in single-modality registration.
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1. INTRODUCTION

The majority of deep learning-based image registration methods comprise inference-based methods where the goal
is one-pass image registration. In these methods a neural network, in particular a convolutional neural network
(CNN), is trained that directly predicts the transformation parameters that align a pair of given input images.
Such networks can be trained in a weakly-supervised manner using predetermined registration parameters or
synthetically generated training examples;1,2 or they can be trained in a fully unsupervised manner, using voxel-
based similarity metrics,3,4 similar to conventional image registration. Recent works proposing unsupervised deep
learning-based image registration methods employ normalized cross correlation.3,4 This metric is an excellent
choice when a linear relation between voxel intensities exist, but it is suboptimal in case of a non-linear relation.

Ever since its introduction as a similarity metric, mutual information has developed into arguably the primary
metric for voxel-based (multi-modal) image registration.5,6 The benefit of mutual information is that it can model
a probabilistic relation between voxel intensities. Hence, in addition to single-modality image registration, it is
generally applicable to registration of medical images with non-linear relation between image intensities, e.g. for
registration of images from different modalities or images with varying levels of contrast enhancement. Despite
its popularity in conventional image registration, mutual information has not yet been applied to unsupervised
deep learning-based image registration.

In this paper we investigate the application of mutual information with two popular network architectures
used for unsupervised deep learning-based image registration: a U-Net-based architecture3 for direct prediction
of displacement vector fields (DVF) and a patch-based architecture (DIRNet)4 for parameterized DVF prediction
with B-splines. The method is evaluated on same-modality cardiac cine MRI and dynamic contrast-enhanced
breast MRI having a nonlinear relation.
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2. METHOD

2.1 Unsupervised Image Registration CNN

Training a CNN for unsupervised pair-wise image registration is similar to conventional image registration, be-
cause both use gradient descent-based optimization with a differentiable similarity metric. In both methodologies
the aim is to align a moving images to fixed images. A spatial transformation maps points from the fixed to the
moving image space, an interpolator resamples values mapped by the transform, and a similarity metric is used
for optimization. However, unlike in conventional registration where transformation parameters are optimized,
in DLIR the parameters of a CNN are optimized using all pairs of fixed and moving images from a training set.
After optimization, the trained CNN can be used on unseen image pairs for image registration in one pass.

Popular CNN architectures for deep learning based image registration predict DVFs directly,1,3 while other
architectures use parameterized transformation models, like thin-plate splines,2 or B-splines.4 In our current
work we employ two registration architectures: one outputting a DVFs directly using the design of3 and an
architecture outputting B-spline control points using the design of4 (DIRNet). To mitigate folding, a bending
energy penalty was added to the loss function, with a weight of 0.05.4,7 The CNNs were trained using randomly
sampled spatially linked image patches from fixed and moving image pairs. During training linear interpolation
was used for resampling, and during final testing B-spline interpolation was used. Adam was employed for
optimization using a learning rate of 0.001, β1 = 0.9, and β2 = 0.999.

2.2 Mutual information as a similarity metric

Mutual information originates from information theory. It is a measure of shared information between two
variables.5 In the case of image registration, these variables represent voxel intensities from a pair of images; the
more information is shared between spatially corresponding voxels, the higher their mutual information. Mutual
information relies on calculation of joint and marginal entropies, which relies on the calculation of probability
distributions. To implement mutual information in a deep learning framework, we cannot use a histogram-based
calculation of probability as this is non-differentiable. Hence, we rely on a Parzen window formulation using
a Gaussian function.8 By exploiting this, we are able to implement mutual information in a deep learning
framework, where we make use of the automatic differentiation capabilities of PyTorch.9 We use the following
negative normalized version:

LNMI(A,B) = − I(A,B)

H(A) +H(B)
, (1)

where I(A,B) is the mutual information of images A and B, and H(A) and H(B) their respective marginal
entropies.

3. EXPERIMENTS

We evaluate mutual information for unsupervised deep learning image registration on intra-patient pair-wise
image registration of dynamic contrast-enhanced breast MRI, the dataset has nonlinear voxel intensities caused
by varying phases of contrast enhancement. To evaluate whether mutual information is generally applicable,
we compare mutual information with normalized cross correlation on single-modality cardiac cine MRI from the
ACDC challenge ??. For all experiments we used 64 bins and a Gaussian Parzen window with σ = 3 · 10−3 to
compute the loss LNMI . The sigma was relatively small, because all image intensity values were rescaled and
clamped to an interval of [0, 1) based on their 1st and 99th percentiles. The experiments were performed using
Python 3.6 and PyTorch.9

3.1 Breast MRI

The dynamic contrast-enhanced breast MRI series were acquired on a 1.5 T MRI-scanner: one T1-weighted image
was made before contrast-injection and four after contrast-injection with intervals of 90 s. During scanning some
patient motion may occur that can hamper correct assessment when performing quantitative analyses. Therefore,
image registration is desired before quantitative analysis of breast MRI. The concentration of contrast agent per
tissue-type changes dynamically over time, leading to non-linear differences in voxel-intensities among images.
Thus, mutual information is ideally suited as a similarity metric for registration of these images.
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Figure 1: Registration results fixed image (top row) and the moving image (second row) for both elastix and
PoolNet registrations. The U-Net registration shows an unrealistic deformation in the tumor, which is better
visible in the subtraction images (third row). This is also visible in the corresponding DVFs (bottom row). The
DVFs are RGBA color coded in the x, y, and z direction, and the scaled vector length as alpha channel. The
fixed images in the top row are the same for each method, and are displayed for ease of comparison.

The 150 studies were split into 90 training, 10 validation, 50 hold-out test studies. A U-Net was trained
having a downsampling and upsampling rate of 2 × 2 × 2, and a PoolNet was trained having a grid-spacing of
8× 8× 8 voxels. Training was performed in 75 000 iterations showing mini-batches of 8 random permutations of
patch-pairs of 64 × 64 × 64 voxels.

The deep learning-based image registration method was compared with conventional image registration.
Conventional image registration used a registration schedule specifically optimized for breast MR registration
using elastix10 with normalized mutual information, 64 histogram bins, and 3 resolutions (3D smoothing pyramid
of 4, 2, and 1). Each resolution was optimized in 1 000 iterations. Each iteration, a random coordinate image
sampler sampled 4 096 points within a random sample region.

Registration performance was evaluated in a blinded study by an expert, using fixed and moving images from
the test set having maximum deformation between them. Fixed images were those without contrast enhancement
and moving images were the final contrast-enhanced images. The results of the three registration methods where
shown in a random order to the expert. The expert was forced to make a ranking of preference by comparing
warped images and subtraction images. The expert was free to adjust intensity window and level or inspect
details in the images. There was a statistical difference among the registration methods (χ2 = 10.6, P = 0.032,
Table 1). When comparing between registration methods, it was shown that elastix significantly outperformed
the U-Net registration (32 out of 50 times, 64%, χ2 = 1.48, P = 0.048). None of the other comparisons was
significant.

Additionally, registration performance was quantitatively evaluated by computing histogram-based calcula-

Table 1: Contingency table showing the ranks of all registered images. PoolNet, conventional image registration
(ConvIR), and U-Net were ranked resp. first, second, and third.

Rank elastix U-Net PoolNet
First 17 13 20
Second 18 12 20
Third 15 25 10
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Figure 2: Left: Mutual information before (No IR) and after image registration with U-Net, PoolNet and
conventional image registration (Conv (IR). Right: Amount of folding for registration with U-Net, PoolNet and
conventional image registration (Conv IR).

tion of normalized mutual information after registration, and by evaluating the Jacobian determinant of the
DVFs (Figure 2). Highest mutual information was shown for U-Net and lowest for conventional image regis-
tration. Amount of image folding was quantified by determining the volume percentage of negative Jacobian
determinants. Folding was found in 23 (out of 50) registrations for registration with U-Net, in 14 registration
for PoolNet, and no folding had occurred in conventional image registration.

3.2 Cardiac MRI

Cardiac cine MRI was used from the Automated Cardiac Diagnosis Challenge (ACDC).11 The dataset contains
short-axis reconstructions of highly anisotropic volumetric images. The images have varying spatial and temporal
resolution. All images visualize the heart during a single heart beat. The images have reference labels of the
time-points with maximum deformation: the end-diastolic and end-systolic time-points. The challenge provides
annotations for the left ventricle blood pool (LVb), the left ventricle myocardium (LVm), and the right ventricle
(RV).

To evaluate whether mutual information is generally applicable, we compared mutual information with nor-
malized cross correlation on this single-modality non-contrast-enhanced dataset.4 Since the dataset is highly
anisotropic, we adjusted the U-Net and PoolNet designs to account for this. Both networks were implemented
in 3D, but downsampling was not applied through-plane; downsampling and upsampling factors for the U-Net
were set to (2 × 2 × 1), and grid spacing of the PoolNet was set to (8 × 8 × 1) voxels.

Experiments were performed using a 4-fold cross-validation setup using the 100 training images. The network
of each fold was trained in 50 000 iterations of mini-batches consisting of patch pairs with a size (128 × 128 × 6)
voxels, regardless of voxel spacing.

Boxplots in Figure 4 show amount of folding and label propagation results. Folding is much more apparent in
U-Net based architectures, especially when normalized cross correlation is employed as a similarity metric. Lowest
amount of folding was seen in a PoolNet architecture using mutual information. Figure 3 shows registrations
with corresponding DVFs which are exemplary for all experiments: the DVFs of U-Net trained with mutual
information show less smooth DVFs than the other approaches.
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Figure 3: Registration results of cardiac MR. Fixed and moving images are image slices taken from volumes at
end-systole and end-diastole. The top row show warped images. The bottom row shows the corresponding color
coded DVFs.

4. DISCUSSION AND CONCLUSION

We presented a method for unsupervised deep learning image registration using mutual information as a similarity
metric. The results show that CNNs trained with mutual information perform on par with a conventional method
specifically designed for breast MRI registration. Additionally, we have shown general applicability of mutual
information for single-modality deep learning registration of cardiac MRI.

Mutual information can be used to train any CNN architecture, but there are some noticeable differences in
performance. The experiments with registration of breast MR images show that the highest mutual information
was obtained using a CNN for direct DVF prediction. This is likely a consequence of finer granularity of the DVF,
resulting in more precise alignment. High mutual information, however, was not related to the expert’s preference.
On the contrary, the results from B-spline based CNN and conventional image registration were preferred more
often, although this was not significant. Fine granularity is not always favorable in image registration, since
it might result in unrealistic deformations and increased folding (e.g. Figure 1). The expert’s preference for
B-spline registration is likely a consequence of the inherent smoothness of the DVFs generated with B-splines.

All CNNs trained for Cardiac MRI registration showed high performance in terms of Dice coeffient and
Hausdorff distance.4 Furthermore, CNNs trained with mutual information generated DVFs with negligible
folding, especially when compared to CNNs trained with normalized cross correlation. This is likely a consequence
of mutual information being relatively insensitive to small intensity differences between images because of its
probabilistic nature. While cardiac MR images did not contain contrast agents, there are differences in image
intensity among timepoints, especially in the right ventricle. In these cases, normalized cross correlation might
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Figure 4: Boxplots showing registration results of U-Net-based architecture and pooling-based architectures
for registration of cardiac MR data. Left: amount of folding (i.e. singularities) expressed in percentages of
total volume. Middle: Dice coefficients obtained by label propagation of end-diastolic and end-systolic volumes.
Right: Hausdorff distances obtained by label propagation of end-diastolic and end-systolic volumes. For label
propagation three structures were individually analyzed: left ventricle bloodpool (LVb), left ventricle mycardium
(LVm), and the right ventricle (RV). Label propagation results are similar for all methods, but image folding is
less apparant for mutual information based networks.

be too stringent and force voxel-precise alignment thereby inadvertently generating implausible deformations.
While, the employed bending energy penalty enforced smooth DVF topology and mitigated image folding,
implausible deformations caused by normalized cross correlation might be fully prevented by using a diffeomorphic
approach.12

We have shown that mutual information is suitable for unsupervised deep learning image registration regard-
less of employed CNN architecture. It is likely that mutual information can be used to train CNNs for other
(multi-modality) registration applications that were previously handled by conventional image registration, or
by normalized cross correlation-driven deep learning image registration.
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